482 research outputs found

    Genome-Wide Association Study Reveals Natural Variations Contributing to Drought Resistance in Crops

    Get PDF
    Crops are often cultivated in regions where they will face environmental adversities; resulting in substantial yield loss which can ultimately lead to food and societal problems. Thus, significant efforts have been made to breed stress tolerant cultivars in an attempt to minimize these problems and to produce more stability with respect to crop yields across broad geographies. Since stress tolerance is a complex and multi-genic trait, advancements with classical breeding approaches have been challenging. On the other hand, molecular breeding, which is based on transgenics, marker-assisted selection and genome editing technologies; holds great promise to enable farmers to better cope with these challenges. However, identification of the key genetic components underlying the trait is critical and will serve as the foundation for future crop genetic improvement. Recently, genome-wide association studies have made significant contributions to facilitate the discovery of natural variation contributing to stress tolerance in crops. From these studies, the identified loci can serve as targets for genomic selection or editing to enable the molecular design of new cultivars. Here, we summarize research progress on this issue and focus on the genetic basis of drought tolerance as revealed by genome-wide association studies and quantitative trait loci mapping. Although many favorable loci have been identified, elucidation of their molecular mechanisms contributing to increased stress tolerance still remains a challenge. Thus, continuous efforts are still required to functionally dissect this complex trait through comprehensive approaches, such as system biological studies. It is expected that proper application of the acquired knowledge will enable the development of stress tolerant cultivars; allowing agricultural production to become more sustainable under dynamic environmental conditions

    Active Defense Analysis of Blockchain Forking through the Spatial-Temporal Lens

    Full text link
    Forking breaches the security and performance of blockchain as it is symptomatic of distributed consensus, spurring wide interest in analyzing and resolving it. The state-of-the-art works can be categorized into two kinds: experiment-based and model-based. However, the former falls short in exclusiveness since the derived observations are scenario-specific. Hence, it is problematic to abstractly reveal the crystal-clear forking laws. Besides, the models established in the latter are spatiality-free, which totally overlook the fact that forking is essentially an undesirable result under a given topology. Moreover, few of the ongoing studies have yielded to the active defense mechanisms but only recognized forking passively, which impedes forking prevention and cannot deter it at the source. In this paper, we fill the gap by carrying out the active defense analysis of blockchain forking from the spatial-temporal dimension. Our work is featured by the following two traits: 1) dual dimensions. We consider the spatiality of blockchain overlay network besides temporal characteristics, based on which, a spatial-temporal model for information propagation in blockchain is proposed; 2) active defense. We hint that shrinking the long-range link factor, which indicates the remote connection ability of a link, can cut down forking completely fundamentally. To the best of our knowledge, we are the first to inspect forking from the spatial-temporal perspective, so as to present countermeasures proactively. Solid theoretical derivations and extensive simulations are conducted to justify the validity and effectiveness of our analysis.Comment: 10 pages,10 figure

    Mini-Margin Nephron Sparing Surgery for Renal Cell Carcinoma 4 cm or Less

    Get PDF
    Objectives. To explore the safety and efficacy of mini-margin nephron sparing surgery (NSS) for renal cell carcinoma (RCC) 4 cm or less. Methods. Total of 389 cases of RCC 4 cm or less with normal contralateral kidneys were included in the study, including 135 cases treated by mini-margin NSS, 98 by 1 cm-NSS and 156 by radical nephrectomy (RN). The clinical results were followed-up and comparatively analyzed. Results. The mean and median margin width for mm-NSS was 2.2 and 2.0 mm (range 0 to 5). Of them, 112 (83.0%) cases had margins of 3 mm or less, and 26 had margins of 0 mm (19.3%). The mean width of margin for 1 cm-NSS was 11.6 mm (median 12, range 10~15). None of the NSS patients had positive surgical margins. The mean follow-up for mm-NSS, 1 cm-NSS and RN patients was 69, 82 and 82 months, respectively. Three mm-NSS patients, two 1 cm- NSS and four RN patients died of non-cancer related causes. Two mm-NSS patient (1.6%) experienced local recurrence. No distant metastasis was detected in all the patients. The over all 5-year survivals for NSS and RN patients were 100%, 100% and 98.7%, respectively (P = .950). Conclusions. Mini-margin NSS is as safe and effective as 1 cm-NSS and RN in treating early localized RCC 4 cm or less

    Flexible Neural Image Compression via Code Editing

    Full text link
    Neural image compression (NIC) has outperformed traditional image codecs in rate-distortion (R-D) performance. However, it usually requires a dedicated encoder-decoder pair for each point on R-D curve, which greatly hinders its practical deployment. While some recent works have enabled bitrate control via conditional coding, they impose strong prior during training and provide limited flexibility. In this paper we propose Code Editing, a highly flexible coding method for NIC based on semi-amortized inference and adaptive quantization. Our work is a new paradigm for variable bitrate NIC. Furthermore, experimental results show that our method surpasses existing variable-rate methods, and achieves ROI coding and multi-distortion trade-off with a single decoder.Comment: NeurIPS 202

    Correcting the Sub-optimal Bit Allocation

    Full text link
    In this paper, we investigate the problem of bit allocation in Neural Video Compression (NVC). First, we reveal that a recent bit allocation approach claimed to be optimal is, in fact, sub-optimal due to its implementation. Specifically, we find that its sub-optimality lies in the improper application of semi-amortized variational inference (SAVI) on latent with non-factorized variational posterior. Then, we show that the corrected version of SAVI on non-factorized latent requires recursively applying back-propagating through gradient ascent, based on which we derive the corrected optimal bit allocation algorithm. Due to the computational in-feasibility of the corrected bit allocation, we design an efficient approximation to make it practical. Empirical results show that our proposed correction significantly improves the incorrect bit allocation in terms of R-D performance and bitrate error, and outperforms all other bit allocation methods by a large margin. The source code is provided in the supplementary material

    Fast Deep Matting for Portrait Animation on Mobile Phone

    Full text link
    Image matting plays an important role in image and video editing. However, the formulation of image matting is inherently ill-posed. Traditional methods usually employ interaction to deal with the image matting problem with trimaps and strokes, and cannot run on the mobile phone in real-time. In this paper, we propose a real-time automatic deep matting approach for mobile devices. By leveraging the densely connected blocks and the dilated convolution, a light full convolutional network is designed to predict a coarse binary mask for portrait images. And a feathering block, which is edge-preserving and matting adaptive, is further developed to learn the guided filter and transform the binary mask into alpha matte. Finally, an automatic portrait animation system based on fast deep matting is built on mobile devices, which does not need any interaction and can realize real-time matting with 15 fps. The experiments show that the proposed approach achieves comparable results with the state-of-the-art matting solvers.Comment: ACM Multimedia Conference (MM) 2017 camera-read
    corecore